Sonoelasticity imaging: theory and experimental verification.
نویسندگان
چکیده
Sonoelasticity is a rapidly evolving medical imaging technique for visualizing hard tumors in tissues. In this novel diagnostic technique, a low-frequency vibration is externally applied to excite internal vibrations within the tissue under inspection. A small stiff inhomogeneity in a surrounding tissue appears as a disturbance in the normal vibration eigenmode pattern. By employing a properly designed Doppler detection algorithm, a real-time vibration image can be made. A theory for vibrations, or shear wave propagation in inhomogeneous tissue has been developed. A tumor is modeled as an elastic inhomogeneity inside a lossy homogeneous elastic medium. A vibration source is applied at a boundary. The solutions for the shear wave equation have been found both for the cases with tumor (inhomogeneous case) and without tumor (homogeneous case). The solutions take into account varying parameters such as tumor size, tumor stiffness, shape of vibration source, lossy factor of the material, and vibration frequency. The problem of the lowest detectable change in stiffness is addressed using the theory, answering one of the most critical questions in this diagnostic technique. Some experiments were conducted to check the validity of the theory, and the results showed a good correspondence to the theoretical predictions. These studies provide basic understanding of the phenomena observed in the growing field of clinical Sonoelasticity imaging for tumor detection.
منابع مشابه
Theory and application of sonoelasticity imaging
Sonoelasticity imaging uses low-frequency (100-Hz) viSince low-frequency longitudinal waves have wavelengths that brations in tissue and Doppler imaging of vibration patterns to detect are too large compared with organs of interest at the frequencies and define hard tumors. Fundamental theoretical considerations of used in sonoelasticity imaging [3], we have chosen to concentrate sonoelasticity...
متن کاملRobust Anti-Windup Control Design for PID Controllers–Theory and Experimental Verification
This paper addresses an approximation-based anti-windup (AW) control strategy for suppressing the windup effect caused by actuator saturation nonlinearity in proportional–integral–derivative (PID) controlled systems. The effect of actuator constraint is firstly regarded as a disturbance imported to the PID controller. The external disturbance can then be modeled by a linear differential equatio...
متن کاملVerification of a Quality Management Theory: Using a Delphi Study
Background A model of quality management called Strategic Collaborative Quality Management (SCQM) model was developed based on the quality management literature review, the findings of a survey on quality management assessment in healthcare organisations, semi-structured interviews with healthcare stakeholders, and a Delphi study on healthcare quality management experts. The purpose of this stu...
متن کاملComparative Study between Electronic Portal Imaging Device (EPID) and Cone Beam Computed Tomography (CBCT) for Radiation Treatment Verifications
Introduction: Electronic Portal Imaging Device (EPID) and Cone Beam Computed Tomography (CBCT) are the preferred tools of Image Guided Radiotherapy (IGRT) and Dose Guided Radiotherapy (DGRT) which have been used for Radiotherapy treatment verifications. As a result, the number of publications dealing with these two tools for radiation treatment verification has increased consi...
متن کاملVerification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging
Background: In this work investigation of the normoxic PAGAT polymer gel dosimeter such as sensitivity, the R2-dose response with post time and the percentage depth dose (PDD) of PAGAT polymer gel dosimeter have been undertaken. Materials and Methods: Using MRI, the formulation to give the maximum change in the transverse relaxation rate R2 was determined to be 4.5% N,N'-methylenbis- ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 97 6 شماره
صفحات -
تاریخ انتشار 1995